The Mathematics of Geographic Profiling

Towson University Applied Mathematics Laboratory

Dr. Mike O'Leary

Supported by the NIJ through grant 2005-IJ-CX-K036

Project Participants

- Towson University Applied Mathematics Laboratory
 - Undergraduate research projects in applied mathematics.
 - Founded in 1980
- National Institute of Justice
- Special thanks to Stanley Erickson (NIJ), Ron Wilson (NIJ) and Andrew Engel (SAS)

Collaborators

- Dr. Coy L. May (Towson University)
- 2005-2006 Students:
 - Paul Corbitt
 - Brooke Belcher
 - Brandie Biddy
 - Gregory Emerson
- 2006-2007 Students:
 - Chris Castillo
 - Adam Fojtik

- Laurel Mount
- Ruozhen Yao
- Melissa Zimmerman

- Jonathan Vanderkolk
- Grant Warble

Geographic Profiling

The Question:

Given a series of linked crimes committed by the same offender, can we make predictions about the anchor point of the offender?

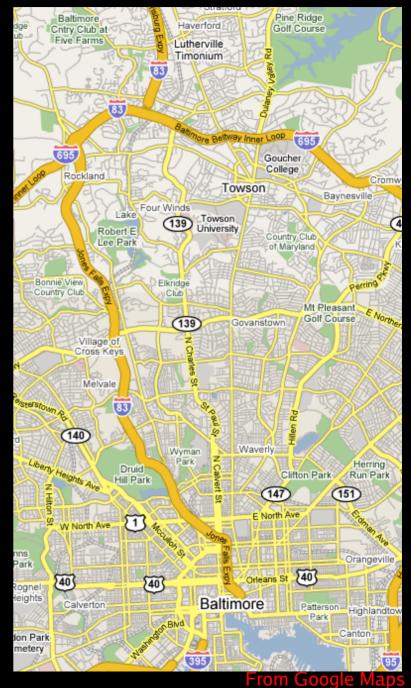
 The anchor point can be a place of residence, a place of work, or some other commonly visited location.

Geographic Profiling

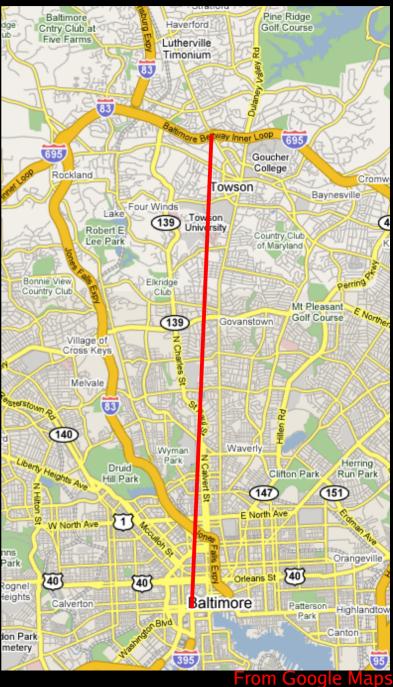
- What characteristics should a good geographic profiling method possess?
 - 1. It should be mathematically rigorous.
 - 2. There should be explicit connections between assumptions on offender behavior and components of the mathematical model.

Geographic Profiling

- What (other) characteristics should a good geographic profiling technique possess?
 - 3. It should take into account local geographic features that affect:
 - a. The selection of a crime site;b. The selection of an anchor point.
 - 4. It should rely only on data available to local law enforcement.
 - 5. It should return a prioritized search area.


Main Result

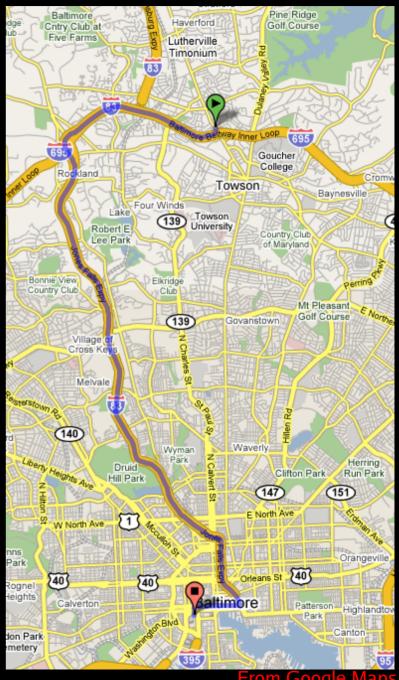
- We have developed a fundamentally new mathematical technique for geographic profiling.
 - We have implemented the algorithm in software, and begun testing it on actual crime series.


Existing Methods

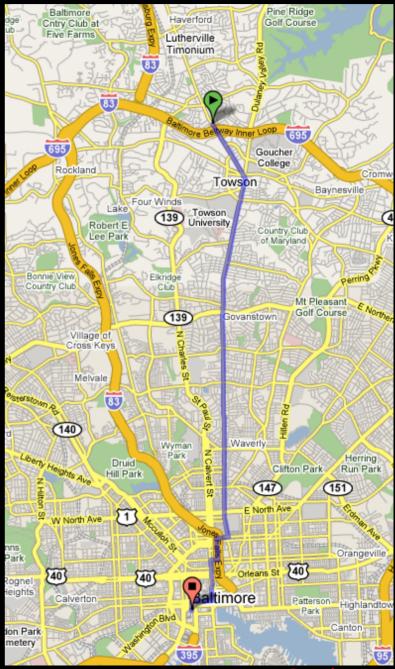
- Spatial distribution strategies
- Probability distance strategies
- Notation:
 - Anchor point- $z = (z^{(1)}, z^{(2)})$
 - Crime sites- x_1, x_2, \cdots, x_n
 - Number of crimes- *n*

How do we measure the distance between points?

- How do we measure the distance between points?
 - Euclidean $d_2(x, y) = \sqrt{(x^{(1)} - y^{(1)})^2 + (x^{(2)} - y^{(2)})^2}$

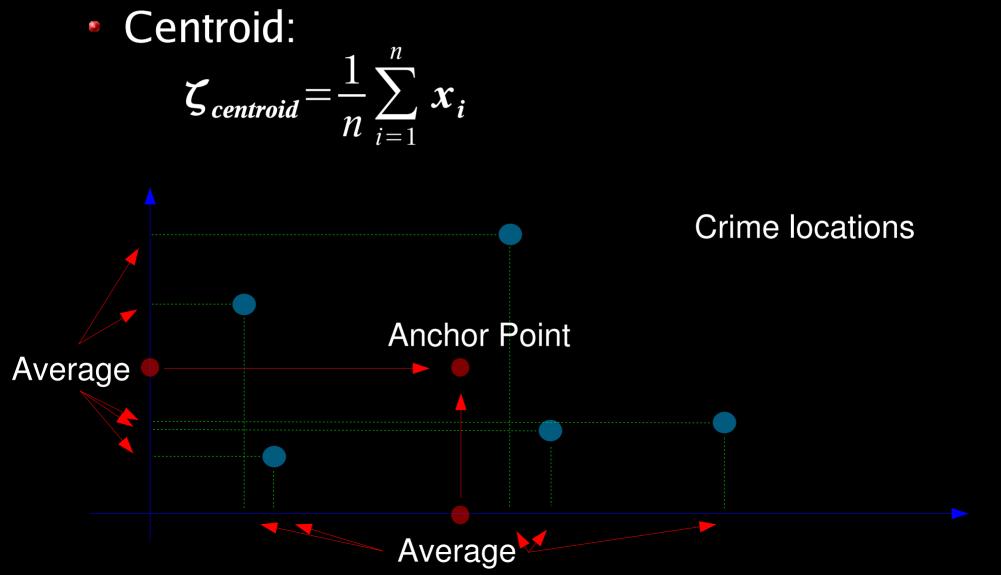


- How do we measure the distance between points?
 - Euclidean
 - $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x^{(1)} y^{(1)})^2 + (x^{(2)} y^{(2)})^2}$
 - Manhattan
 - $d_1(\mathbf{x}, \mathbf{y}) = |x^{(1)} y^{(1)}| + |x^{(2)} y^{(2)}|$

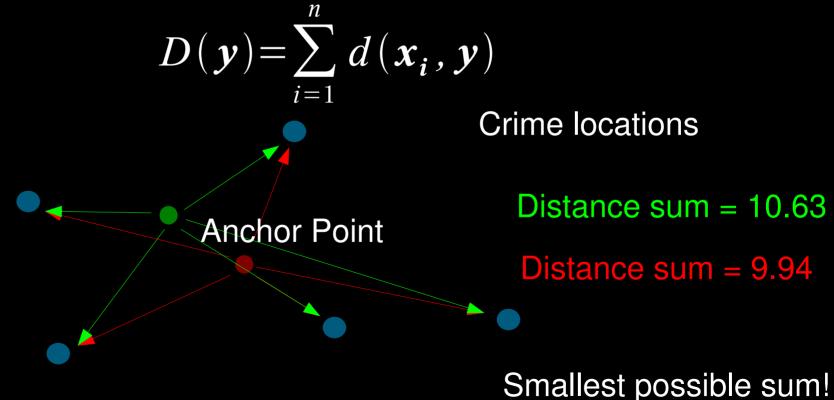


- How do we measure the distance between points?
 - Euclidean
 - $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x^{(1)} y^{(1)})^2 + (x^{(2)} y^{(2)})^2}$
 - Manhattan
 - $d_1(x, y) = |x^{(1)} y^{(1)}| + |x^{(2)} y^{(2)}|$
 - Highway

 $d_{\text{hwy}}(\boldsymbol{x}, \boldsymbol{y}) = ?$



- How do we measure the distance between points?
 - Euclidean
 - $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(x^{(1)} y^{(1)})^2 + (x^{(2)} y^{(2)})^2}$
 - Manhattan
 - $d_1(\mathbf{x}, \mathbf{y}) = |x^{(1)} y^{(1)}| + |x^{(2)} y^{(2)}|$
 - Highway
 - $d_{\text{hwy}}(\mathbf{x}, \mathbf{y}) = ?$
 - Street $d_{\text{street}}(x, y) = ?$


rom Google Maps

Spatial Distribution Strategies

Spatial Distribution Strategies

• Center of minimum distance: ζ_{cmd} is the value of y that minimizes

Spatial Distribution Strategies

- Circle Method:
 - Anchor point contained in the circle whose diameter are the two crimes that are farthest apart.

Crime locations

Anchor Point

Probability Distribution Strategies

- The anchor point is located in a region with a high "hit score".
- The hit score S(y) has the form

$$S(\mathbf{y}) = \sum_{i=1}^{n} f(d(\mathbf{y}, \mathbf{x}_{i}))$$

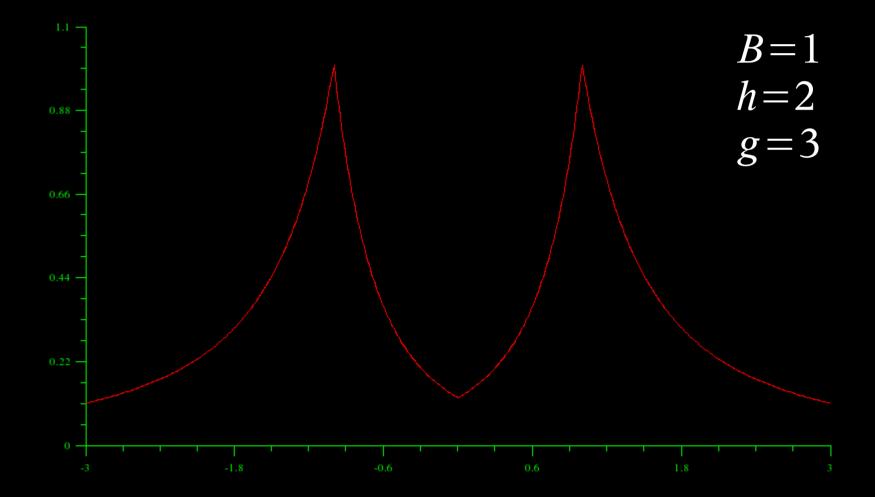
= $f(d(\mathbf{z}, \mathbf{x}_{1})) + f(d(\mathbf{z}, \mathbf{x}_{2})) + \dots + f(d(\mathbf{z}, \mathbf{x}_{n}))$

where x_i are the crime locations and f is a decay function and d is a distance.

Probability Distribution Strategies

Linear:

•
$$f(d) = A - Bd$$

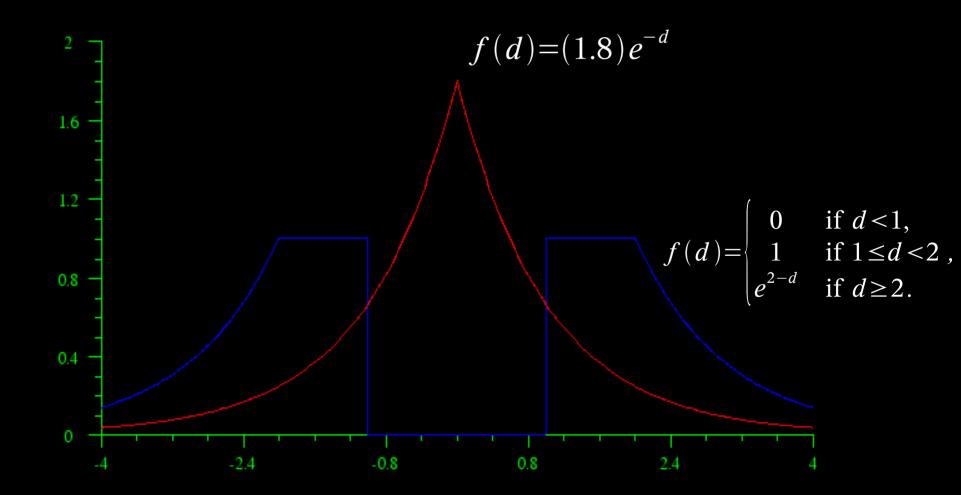

Rossmo (Rigel)

- Manhattan distance metric.
- Decay function

$$f(d) = \begin{cases} \frac{k}{d^{h}} & \text{if } d > B \\ \frac{k B^{g-h}}{(2B-d)^{g}} & \text{if } d \leq B \end{cases}$$

The constants k,g,h and B are empirically defined

Rossmo (Rigel)


Canter, Coffey, Huntley & Missen (Dragnet)

- Euclidean distance
- Decay functions

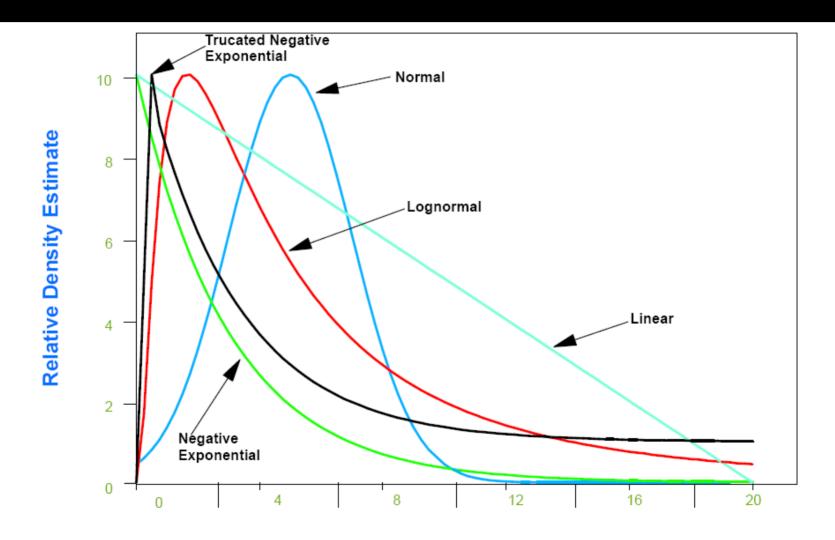
•
$$f(d) = A e^{-\beta d}$$

•
$$f(d) = \begin{cases} 0 & \text{if } d < A, \\ 1 & \text{if } A \le d < B, \\ Ce^{-\beta d} & \text{if } d \ge B. \end{cases}$$

Canter, Coffey, Huntley & Missen (Dragnet)

Levine (CrimeStat)

- Euclidean distance
- Decay functions
 - Linear f(d) = A + Bd
 - Negative exponential


$$f(d) = A e^{-\beta}$$

Normal

$$f(d) = \frac{A}{\sqrt{2\pi S^2}} \exp\left[\frac{-(d-d)^2}{2S^2}\right]$$

• Lognormal $f(d) = \frac{A}{d\sqrt{2\pi S^2}} \exp\left[\frac{-(\ln d - \overline{d})^2}{2S^2}\right]$

Levine (CrimeStat)

Distance from Crime

From Levine (2004)

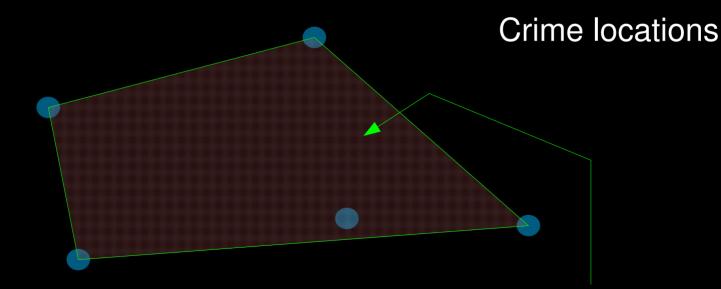
CrimeStat

Section CrimeStat III	
Data setup Spatial description Spatial modeling Crime travel d	lemand Options
Interpolation Space-time analysis Journey-to-Crime Calibrate Journey-to-crime function Select output file Select kernel parameters Calibrate Journey-to-crime estimation Select output file Select kernel parameters Calibrate Journey-to-crime estimation Incident file: Primary Save output to	
i minary	Select data
Image: Select data file	Files Select Files Origin coordinates Edit File Column X C:\Documents and Settings\moleary\My Docu Y C:\Documents and Settings\moleary\My Docu C:\Documents and Settings\moleary\My Docu Y C:\Documents and Settings\moleary\My Docu Column Missing values C:\Documents and Settings\moleary\My Docu None> Blank> C:\Documents and Settings\moleary\My Docu C:\Documents and Settings\moleary\My Docu Y C:\Documents and Settings\moleary\My Docu
Compute Quit	Type of coordinate system Data units Image: Decimal Degrees Image: Decimal Degrees Image: Decimal Degrees

Probability Distribution Strategies

- Existing methods differ in their choices of
 - The distance measure, and
 - The distance decay function;

i=1


but share the common mathematical heritage:

$$S(\mathbf{y}) = \sum_{i=1}^{n} f(d(\mathbf{y}, \mathbf{x}_{i}))$$

• In practice, S(y) may be evaluated only at discrete values y_j giving us a hit score matrix $S_{ij} = \sum_{ij}^{n} f(d(y_j, x_i))$

- These techniques are all *ad hoc*.
- What is their theoretical justification?
 - What assumptions are being made about criminal behavior?
 - What mathematical assumptions are being made?
- How do you choose one method over another?

- The convex hull effect:
 - The anchor point always occurs inside the convex hull of the crime locations.

- How do you add in local information?
 - How could you incorporate socioeconomic variables into the model?

Snook, Individual differences in distance travelled by serial burglars
Malczewski, Poetz & Iannuzzi, Spatial analysis of residential burglaries in London, Ontario
Bernasco & Nieuwbeerta, How do residential burglars select target areas?
Osborn & Tseloni, The distribution of household property crimes

- These methods require some a priori knowledge of the offender's distance decay function.
 - In particular, they require an estimate of the distance that the serial offender is likely to travel before the analysis process begins.
 - Indeed, the constant(s) that appear in the distance decay function must be selected before starting the analysis.

A New Approach

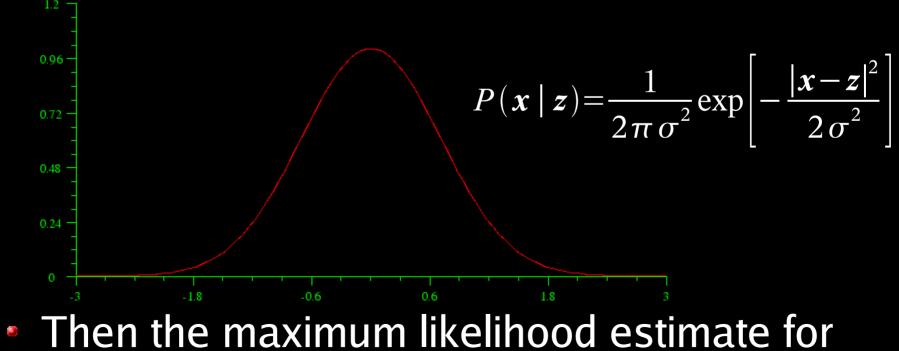
- Let us start with a model of offender behavior.
 - In particular, let us begin with the ansatz that an offender with anchor point z commits a crime at the location x according to a probability density function $P(x \mid z)$.
 - This is an inherently continuous model.

Modeling with Probability

- Probabilistic models are commonly used to model problems that are deterministic.
 - Stock market
 - Population genetics
 - Heat flow
 - Chemical diffusion

A New Approach

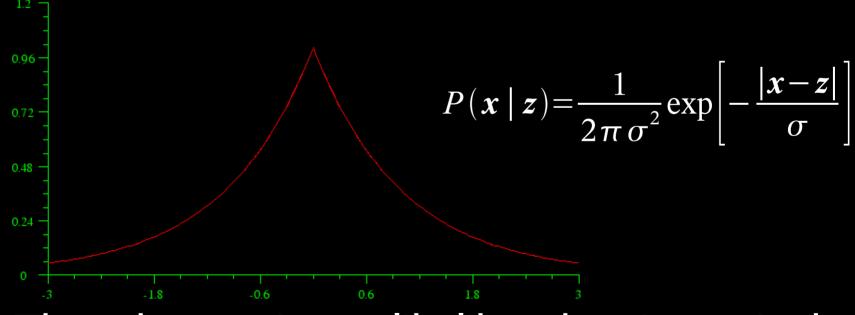
- Assumptions about
 - The offender's likely behavior, and
- The local geography can then be incorporated into the form of $P(\mathbf{x} \mid \mathbf{z})$.


The Mathematics

• Given crimes located at x_1, x_2, \dots, x_n the *maximum likelihood estimate* for the anchor point ζ_{mle} is the value of y that maximizes $L(y) = \prod_{i=1}^{n} P(x_i | y)$ $= P(x_1 | y) P(x_2 | y) \cdots P(x_n | y)$

or equivalently, the value that maximizes $\lambda(\mathbf{y}) = \sum_{i=1}^{n} \ln P(\mathbf{x}_i | \mathbf{y})$ $= \ln P(\mathbf{x}_1 | \mathbf{y}) + \ln P(\mathbf{x}_2 | \mathbf{y}) + \dots + \ln P(\mathbf{x}_n | \mathbf{y})$

Relation to Spatial Distribution Strategies


 If we assume offenders choose target locations based only on a distance decay function in normal form:

Then the maximum likelihood estimate for the anchor point is the centroid.

Relation to Spatial Distribution Strategies

 If we assume offenders choose target locations based only on a distance decay function in exponentially decaying form:

Then the maximum likelihood estimate is the center of minimum distance.

Relation to Probability Distance Strategies

• What is the log likelihood function?

$$\lambda(\mathbf{y}) = \sum_{i=1}^{n} \left[-\ln(2\pi\sigma^2) - \frac{|\mathbf{x}_i - \mathbf{y}|}{\sigma} \right]$$

• This is the hit score S(y) provided we use Euclidean distance and the linear decay f(d) = A + Bd for

$$A = -\ln(2\pi\sigma^2)$$
$$B = -1/\sigma$$

Parameters

 The maximum likelihood technique does not require a priori estimates for parameters other than the anchor point.

$$P(\boldsymbol{x} \mid \boldsymbol{z}, \sigma) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{|\boldsymbol{x}-\boldsymbol{z}|^2}{2\sigma^2}\right]$$

The same process that determines the best choice of z also determines the best choice of σ .

Better Models

- We have recaptured the results of existing techniques by choosing P(x | z) appropriately.
- These choices of $P(\mathbf{x} \mid \mathbf{z})$ are not very realistic.
 - Space is homogeneous and crimes are equi-distributed.
 - Space is infinite.
 - Decay functions were chosen arbitrarily.

Better Models

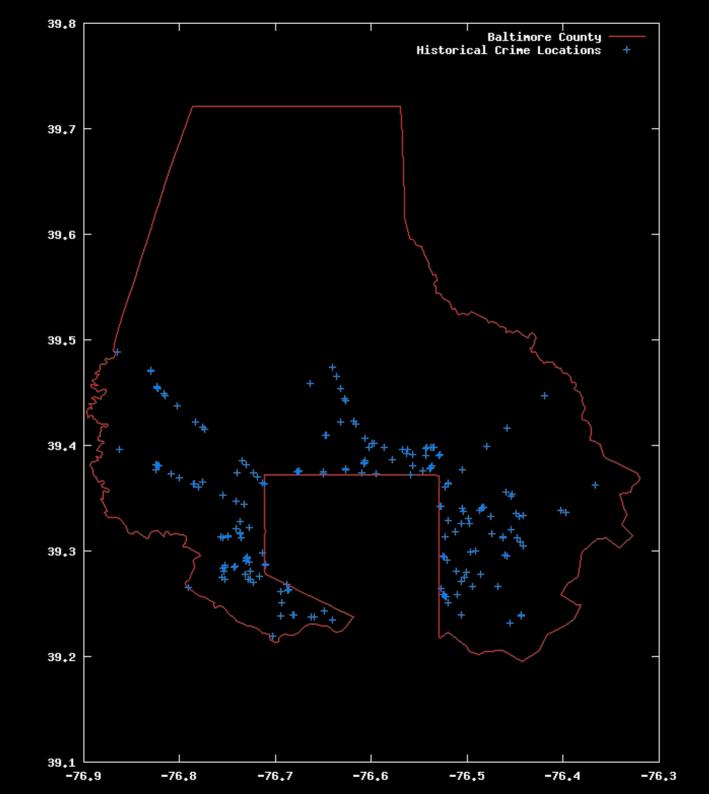
- Our framework allows for better choices of $P(\boldsymbol{x} \mid \boldsymbol{z})$.
- Consider

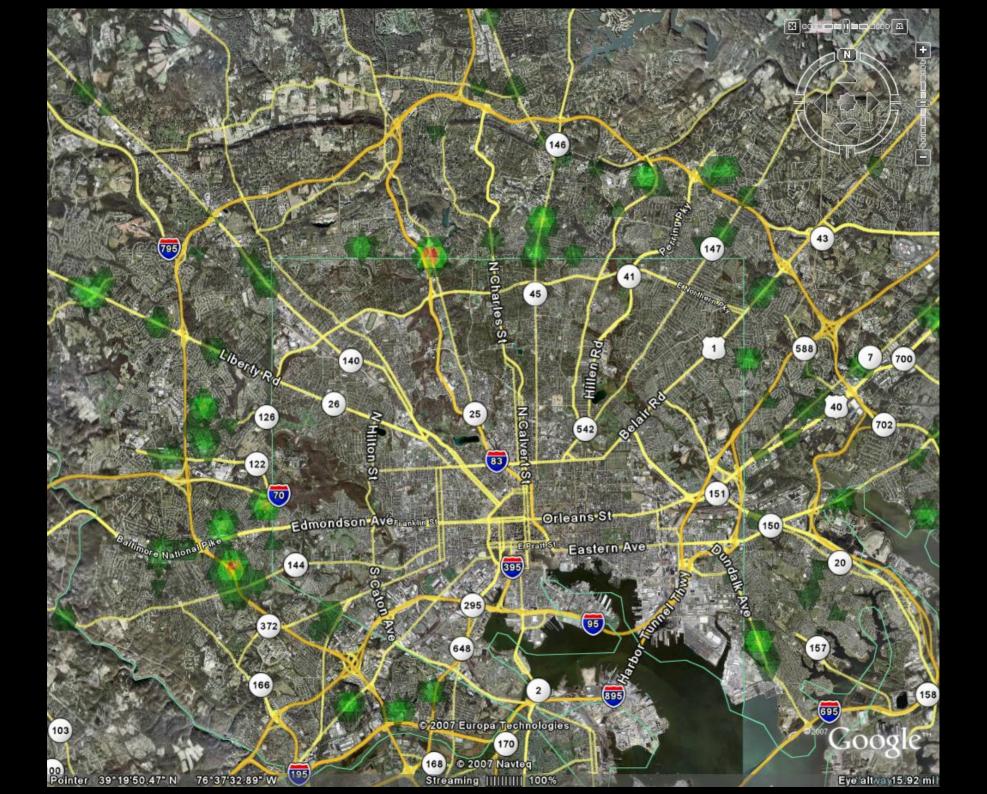
$$P(\mathbf{x} \mid \mathbf{z}) = D(d(\mathbf{x}, \mathbf{z})) \cdot G(\mathbf{x}) \cdot N(z)$$

Distance Decay (Dispersion Kernel) Geographic factors

Normalization

 What geographic factors should be included in the model?

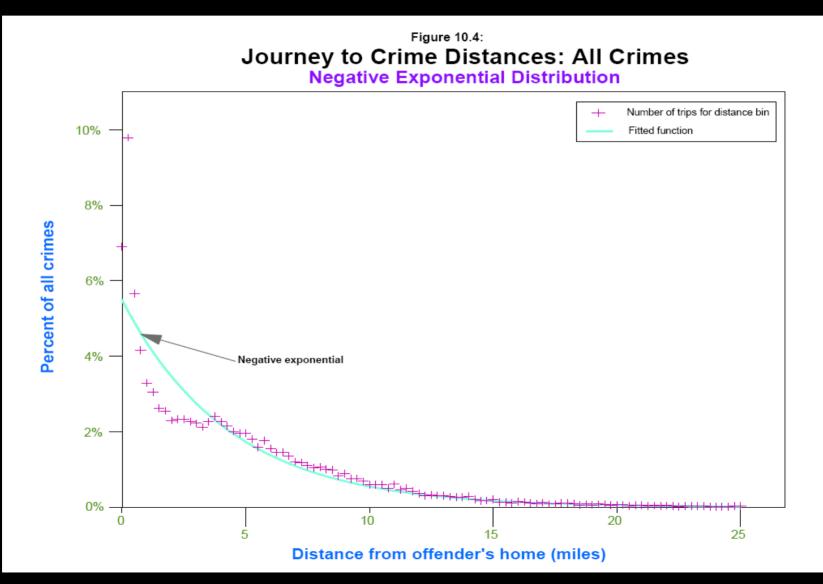

Snook, Individual differences in distance travelled by serial burglars
Malczewski, Poetz & Iannuzzi, Spatial analysis of residential burglaries in London, Ontario
Bernasco & Nieuwbeerta, How do residential burglars select target areas?
Osborn & Tseloni, The distribution of household property crimes

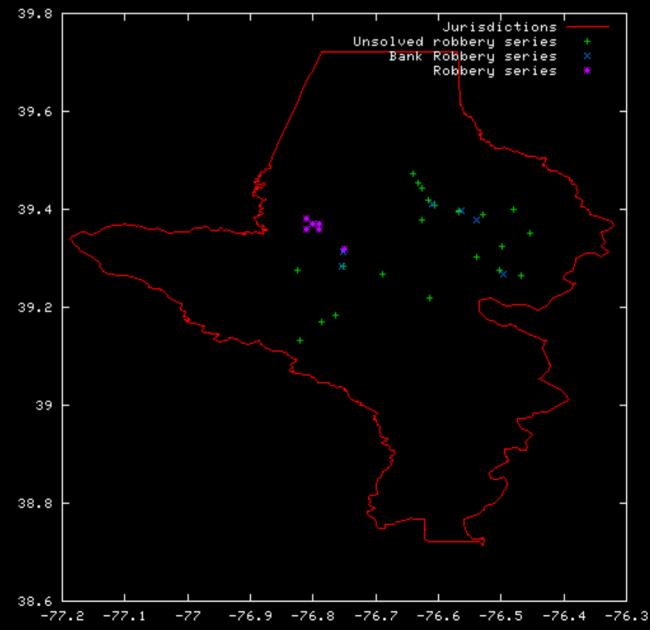

- This approach has some problems.
 - Different crimes have different etiologies.
 - We would need to study each different crime type.
 - There are regional differences.
 - Tseloni, Wittebrood, Farrell and Pease (2004) noted that increased household affluence indicated higher burglary rates in Britain, and indicated lower burglary rates in the U.S.

- Instead, we assume that historical crime rates are reasonable predictors of the likelihood that a particular region will be the site of an offense.
 - Rather than explain crime rates in terms of underlying geographic variables, we simply measure the resulting geographic variability.
- Let G(x) represent the local density of potential targets.

- An analyst can determine what historical data should be used to generate the geographic target density function.
 - Different crime types will necessarily generate different functions G(x).
- G(x) is calculated in the same fashion as hot spots; e.g. by kernel density parameter estimation.

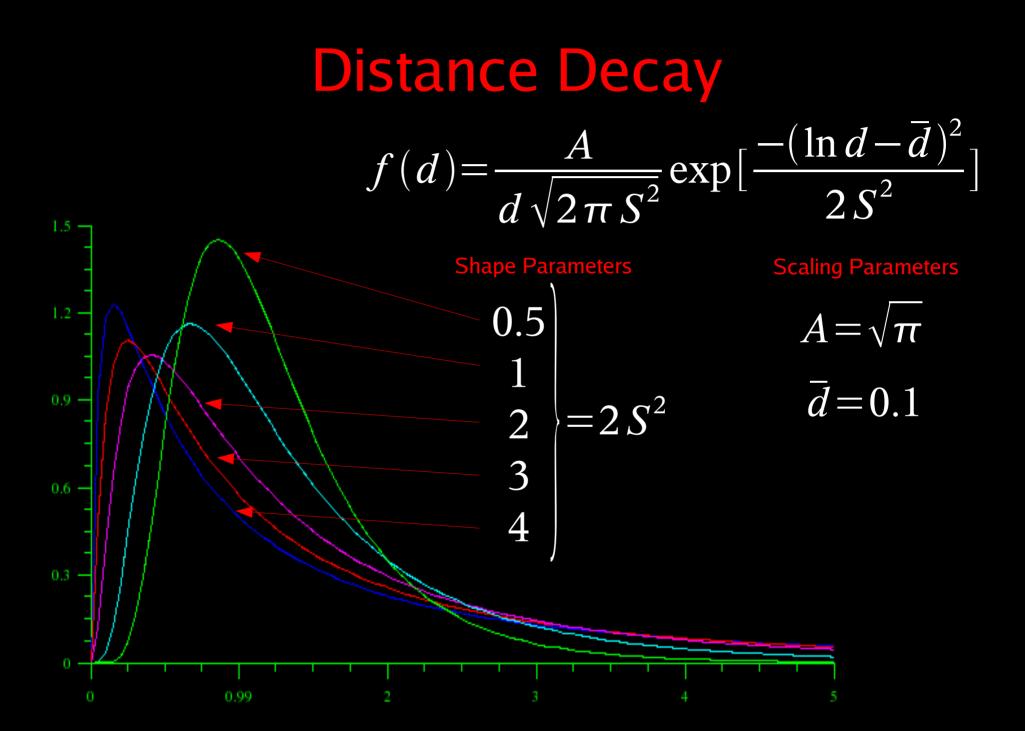
$$G(x) = \sum_{i=1}^{N} K(x - y_i)$$

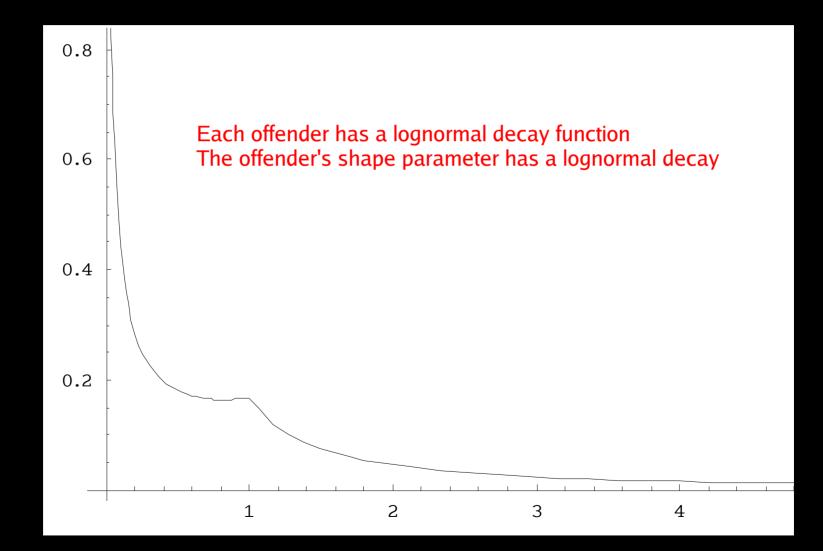


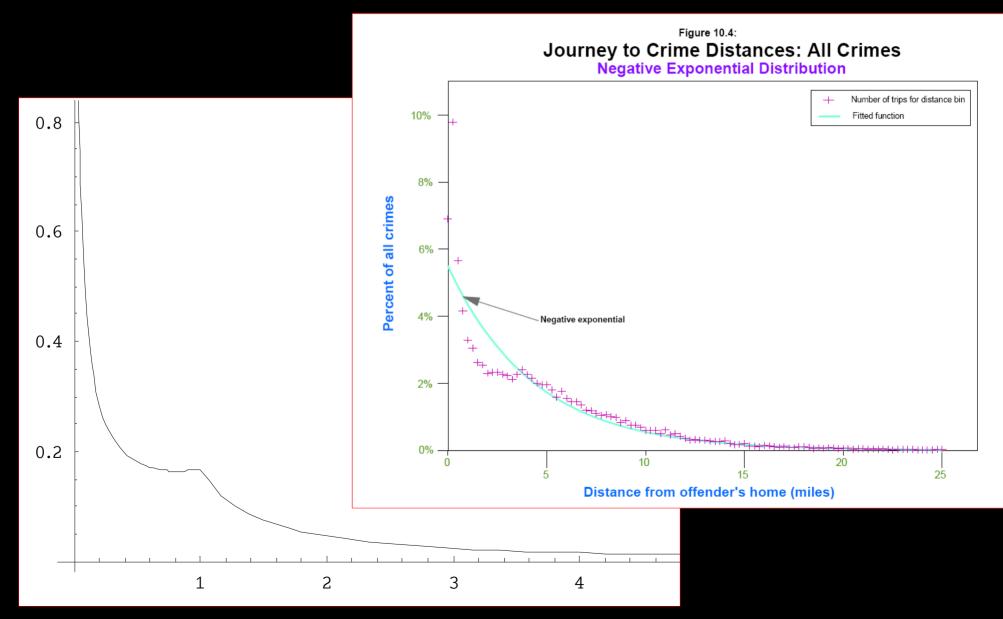

- The target density function G(x) must also account for jurisdictional boundaries.
 - Suppose that a law enforcement agency gets reports for all crimes within the region *J*, and none from outside *J*.
 - Then we must have

$$G(x) = 0$$
 for all $x \notin J$

as no crimes that occur outside J will be known to that agency.




From Levine (2004)



- Suppose that each offender has a decay function $f(d;\lambda)$ where $\lambda \in (0,\infty)$ varies among offenders according to the distribution $\phi(\lambda)$.
- Then if we look at the decay function for all offenders, we obtain the aggregate distribution

$$F(d) = \int_{0}^{\infty} f(d;\lambda) \cdot \phi(\lambda) \, d\,\lambda$$

- Is this real, or an artifact?
- How do we determine the "best" choice of decay function?
 - This needs to be determined in advance.
- Will it vary depending on
 - crime type?
 - Iocal geography?

- The mathematical method does not depend upon any particular choice of the distance decay function, or a particular distance measure.
- We begin with the simple choice

 $D(d(\mathbf{x}, \mathbf{z})) = \exp(-\sigma |\mathbf{x} - \mathbf{z}|)$

where the parameter σ is determined by the crime series data along with the anchor point

Normalization

The expression

$$P(\mathbf{x} \mid \mathbf{z}) = D(d(\mathbf{x}, \mathbf{z})) \cdot G(\mathbf{x}) \cdot N(\mathbf{z})$$

is to represent a probability density function; as a consequence,

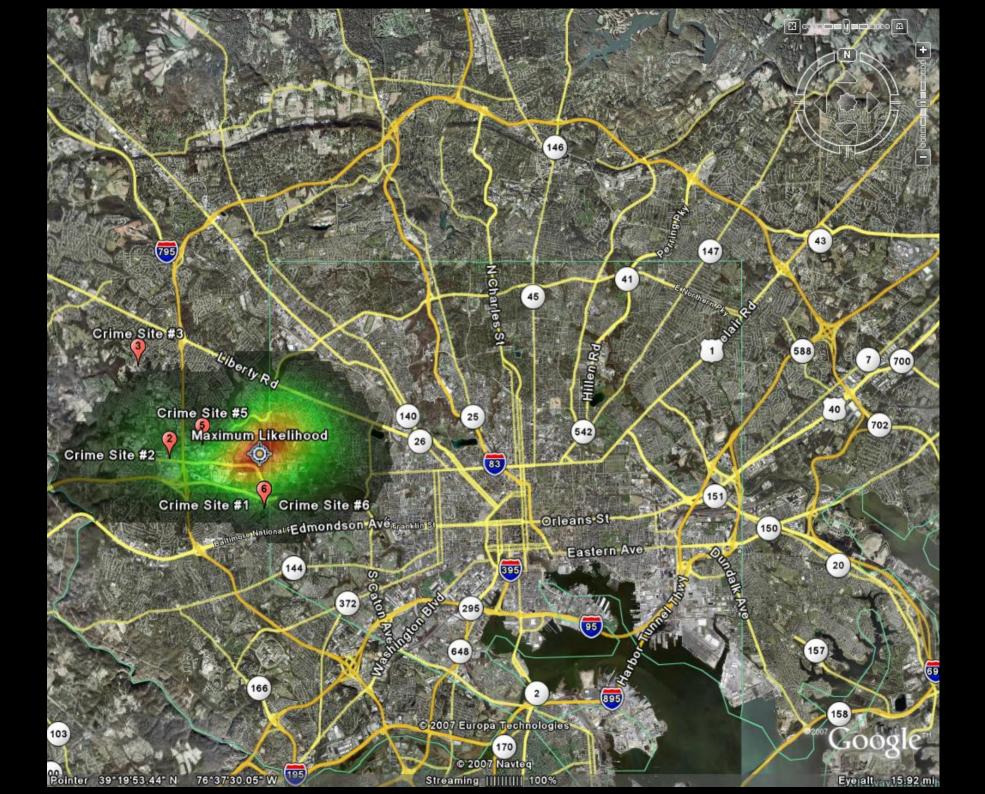
$$N(z) = \frac{1}{\iint_{J} G(y) D(d(y,z)) dy^{(1)} dy^{(2)}}$$

Mathematics

 We are then left with the mathematical problem of finding the maximum value of the likelihood function

$$L(y) = \frac{\prod_{i=1}^{n} D(d(x_{i}, y))G(x_{i})}{\left[\iint_{J} D(d(\xi, y))G(\xi)d\xi^{(1)}d\xi^{(2)}\right]^{n}}$$

Implementation


- We have implemented this algorithm in software.
 - Integration was performed using a sevenpoint fifth-order Gaussian method.
 - Optimization was performed using a cyclic coordinate technique with a Hooke and Jeeves accelerator.
 - Running time with ~650 boundary vertices and ~1000 historical crimes is ~10 minutes.


```
C:\Documents and Settings\moleary\Desktop\v 0.12 devel\Profiler\release>Profiler 📈
.exe
Profiler
Version 0.12 (Pre-Release)
Using Default Parameter file: .\Parameters\Parameters.txt
Using Geography file: .\Parameters\baltimore_county.txt
Using Crime Series file: .\Parameters\BCData\Crimes.txt
Using Historical data file: .\Parameters\BCData\History.txt
Using Output file:
                                .\Parameters\BCData\Likelihood.kml
Triangulating region
Setting up target density
Calculating mean nearest neighbor distance
Precomputing target density
Constructing Likelihood Function
Constructing Initial Guess
Initial spatial quess = ( -76.731598 , 39.311223 )
Initial sigma quess = 44.217570
 Approximations to anchor point and sigma
             y sigma Likelihood
0 -76.731598 39.311223 44.217570 1.892049e+023
1 -76.716733 39.312793 71.545719 3.909148e+023
 2 -76.716733 39.314912 73.128008 4.040361e+023
3 -76.715180 39.314912 72.770779 4.052184e+023
 4 -76.715180 39.314912 72.770779 4.052184e+023
Estimate of anchor point = ( -76.715180 , 39.314912 )
Estimate of sigma = 72.770779
Writing KML file for likelihood function
C:\Documents and Settings\moleary\Desktop\v 0.12 devel\Profiler\release>_
```

•

×

Likelihood Functions

- The estimate for the maximum likelihood is mathematically rigorous.
- The contour surface shows the likelihood function for the optimal choice of σ .
 - This gives a probability surface for the offender's anchor point only if
 - the estimate for sigma is correct, and
 - all anchor points are equally likely.

Strengths of this Framework

- All of the assumptions on criminal behavior are made in the open.
 - They can be challenged, tested, discussed and compared.

Strengths

- The framework is extensible.
 - Vastly different situations can be modelled by making different choices for the form and structure of P(x | z).

• *e.g.* angular dependence, barriers.

- The framework is otherwise agnostic about the crime series.
 - All of the relevant information must be encoded in $P(\mathbf{x} \mid \mathbf{z})$.

Strengths

- This framework is mathematically rigorous.
 - There are mathematical and criminological meanings to the maximum likelihood estimate $\zeta_{\rm mle}$.

Weaknesses of this Framework

GIGO

- The method is only as accurate as the accuracy of the choice of P(x | z).
- It is unclear what the right choice is for $P(x \mid z)$
 - Even with the simplifying assumption that

 $P(\mathbf{x} \mid \mathbf{z}) = D(d(\mathbf{x}, \mathbf{z})) \cdot G(\mathbf{x}) \cdot N(\mathbf{z})$

this is difficult.

Weaknesses

- There is no simple closed mathematical form for $\zeta_{\rm mle}$
 - Relatively complex techniques are required to estimate ζ_{mle} even for simple choices of $P(\mathbf{x} \mid \mathbf{z})$.
- The error analysis for maximum likelihood estimators is delicate when the number of data points is small.

Weaknesses

- The framework assumes that crime sites are independent, identically distributed random variables.
 - This is probably false in general!
- This should be a solvable problem though...

Next Steps

- We only produce the point estimate of $\zeta_{\rm mle}$ and the corresponding likelihood function for the optimal choice of σ .
 - A better result would give a probability density for the anchor point z that accounts for mis-estimates of σ.
 - This should be possible with some Bayesian analysis

Next Steps

- Model improvements
 - What would a better choice for the model of criminal behavior?
- Comparing the results from the model to actual data.

Questions?

Contact information: Dr. Mike O'Leary Director, Applied Mathematics Laboratory Towson University Towson, MD 21252

410-704-7457 moleary@towson.edu